FreeCiv analysis

Guillermo Lépez Alejos

March 28, 2004

Contents

1 Analysis

1.1 Objectives definition
1.2 Requirement specification
1.2.1 Al Programs
1.2.2 Al client side interface
1.3 Analiced parts
1.3.1 Agents
1.3.2 puppeteer
1.4 Questions
1.4.1 General questions
1.4.2 Questions about puppeteer
1.5 Tasks.
1.6 General subproject schema

1 Analysis

1.1 Objectives definition

Obligatories Create the Al client side interface.
Importants Empty
Optionals Make an open design that allows puppeteer to expand function-

ality in the future.

1.2 Requirement specification
1.2.1 AI Programs

We want the Al programs to be able to read and modify the game state (of
course, according the game rules) through an interface.

1.2.2 Al client side interface

puppeteer The interface will be console-based. puppeteer is a console-
based client-side interface that will do our dutty. Some properties are:

e puppeteer has to provide general game data.
e puppeteer has to provide agent related data.
e puppeteer will be used to build other stuff than client side Al

There are manyfold functionalities to be implemented onto puppeteer, but
this project can only handle the client side for AI players.

Language A language for input/output commands is to be defined. To
acomplish the syntax check we’ll use bison.

1.3 Analiced parts
1.3.1 Agents

The agents are programs that perfom some kind of task (move a unit from
point A to point B, take care of a city’s building queue, etc...). Some prop-
erties are:

e Agents are sorted hierarchically; higher the hierarchy of the agent, more
complex is the task performed by it.

e Agents are event based. They can be wake-up/called back/notified /evented
if either the client state changes or some other agent wake them.

1.3.2 puppeteer

puppeteer is a text based console that allows to “talk” directly to a client. It
can be said that it’s a set of two languages; the language of commands and
the language of responces. Long terms goals for puppeteer are:

e Be a console to help debuging, logging, etc...
e Be a fullfledged textual client.
e The same for people with disabilities.

e Game demos and tutorials. If someone writes a logger which produces
puppeteer commands, and if there is a way to make the civserver to
behave deterministic then this log could be feed back to puppeteer and
the game would be repeated again.

e Any kind of external artificial inteligence, like advisers, ai players...

puppeteer is implemented as an agent.

Why implement puppeteer as an agent? The main reason to imple-
ment puppeteer as an agent is that puppeteer should follow the game state
changes. Thanks to the agents manager engine this can be easily done fol-
lowing agents rules.

1.4 Questions
1.4.1 General questions

e How is this client / server achitecture?

e How are the input / output packets handled? (see packhand.h).

1.4.2 Questions about puppeteer

e How is the lexical analysis realized?
o Where is it launched?

e What changes are to be done?

1.5 Tasks

e Define puppeteer’s input / output grammar.

e Integrate puppeteer into FreeCiv code.

1.6 General subproject schema

According to this analysis we can conclude that the project has two branches:
e Definition of puppeteer’s input / output languages.

e Integrate puppeteer into the FreeCiv code.

Index

bison, 2

puppeteer, 2
commands language, 3
responces language, 3

	Analysis
	Objectives definition
	Requirement specification
	AI Programs
	AI client side interface

	Analiced parts
	Agents
	puppeteer

	Questions
	General questions
	Questions about puppeteer

	Tasks
	General subproject schema

